725 research outputs found

    Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001

    Get PDF
    Study objective: Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects. Design: Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders. Participants: All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence. Main results: The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale. Conclusions: Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Self-consistent solution for the polarized vacuum in a no-photon QED model

    Full text link
    We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced from no-photon QED. The associated functional is bounded from below. In the presence of an external field, a minimizer, if it exists, is interpreted as the polarized vacuum and it solves a self-consistent equation. In a recent paper math-ph/0403005, we proved the convergence of the iterative fixed-point scheme naturally associated with this equation to a global minimizer of the BDF functional, under some restrictive conditions on the external potential, the ultraviolet cut-off Λ\Lambda and the bare fine structure constant α\alpha. In the present work, we improve this result by showing the existence of the minimizer by a variational method, for any cut-off Λ\Lambda and without any constraint on the external field. We also study the behaviour of the minimizer as Λ\Lambda goes to infinity and show that the theory is "nullified" in that limit, as predicted first by Landau: the vacuum totally kills the external potential. Therefore the limit case of an infinite cut-off makes no sense both from a physical and mathematical point of view. Finally, we perform a charge and density renormalization scheme applying simultaneously to all orders of the fine structure constant α\alpha, on a simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge

    Mobile Sensing in Environmental Health and Neighborhood Research

    Get PDF
    Public health research has witnessed a rapid development in the use of location, environmental, behavioral, and biophysical sensors that provide high-resolution objective time-stamped data. This burgeoning field is stimulated by the development of novel multisensor devices that collect data for an increasing number of channels and algorithms that predict relevant dimensions from one or several data channels. Global positioning system (GPS) tracking, which enables geographic momentary assessment, permits researchers to assess multiplace personal exposure areas and the algorithmbased identification of trips and places visited, eventually validated and complemented using a GPS-based mobility survey. These methods open a new space-time perspective that considers the full dynamic of residential and nonresidential momentary exposures; spatially and temporally disaggregates the behavioral and health outcomes, thus replacing them in their immediate environmental context; investigates complex time sequences; explores the interplay among individual, environmental, and situational predictors; performs life-segment analyses considering infraindividual statistical units using case-crossover models; and derives recommendations for just-in-time interventions

    Les faunes de coraux (Anthozoaires Scléractiniaires) de la façade atlantique française au Chattien et au Miocène

    Get PDF
    The study of new abundant coral crops and a systematic revision of the historie collections allow us to extend significantly the data about the Upper Oligocene and Miocene Scleractinia of the French atlantic basins. The SW and W-NW France faunas have been considered, and complete lists of the different defined taxa are presented. The general lines of the evolution of this group are specified, and linked to the paleoclimatic and paleobiogeographic changes

    Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering

    Get PDF
    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and non-resonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom -- the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usual through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting ones ability to quantitively characterize the coupling. Here we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an 8-band model of copper oxides, we study the contributions from the lowest order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross-section as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and non-resonant x-ray scattering, as well as Raman and infrared conductivity.Comment: 10 pages, 10 figure

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation

    Full text link
    We consider a generalized Dirac-Fock type evolution equation deduced from no-photon Quantum Electrodynamics, which describes the self-consistent time-evolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of global-in-time solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections include
    corecore